

QUBIT ABACUS

USER MANUAL

How to use the abacus to simulate a single-qubit quantum computer

PERFORM GATES

Simulate quantum computation on qubit by performing gate rotations on the assembly

READ STATES

Read qubit state by reading vector angles for measurement

FIND OUTCOME

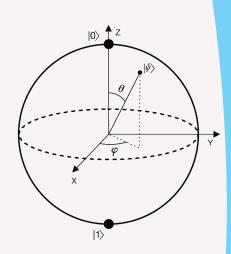
Input qubit state information into MeasureApp on website and collapse the superposition into either 1 or 0

HOW TO READ STATES

A single-qubit quantum state can be written as

$$|\boldsymbol{\psi}\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

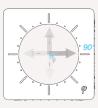
where the probability of measuring the state as $|0\rangle$ =

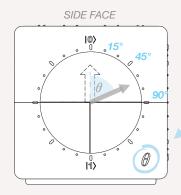

$$\left(\cos\frac{\theta}{2}\right)^2$$

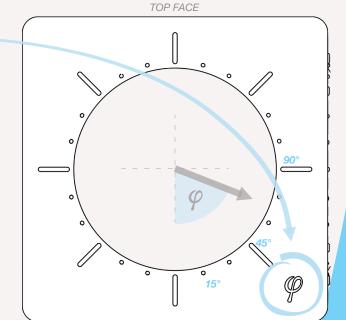
where the probability of measuring the state as |1> =

$$\left(\sin\frac{\theta}{2}\right)^2 = 1 - \left(\cos\frac{\theta}{2}\right)^2$$

The relative phase

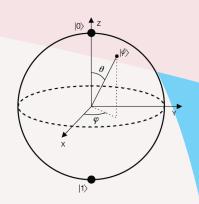





The angle ϕ can be measured by reading the angle of the vector from cage face marked ϕ

The angle θ can be measured by aligning the phase angle ϕ on the top face to the nearest multiple of 90°, then reading the angle of the vector from one of the cage's side faces marked θ

TOP FACE

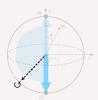


SINGLE-QUBIT GATES

Gates are computation operations.

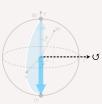
The following is a list of single-qubit gates that will work with the abacus assembly, aside their geometric representations.

(Positive rotations are counter-clockwise of about the



GATE USE / A.K.A. ROTATION

X


Bit-Flip, NOT Rotation by π radians around the x-axis of the Bloch sphere

SPECIAL CASE: $Rx(\phi)$ = rotation by ϕ radians around the x-axis of the Bloch sphere

Rotation by π radians around the Y-AXIS of the Bloch sphere

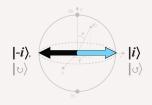
SPECIAL CASE: $Ry(\phi)$ = rotation by ϕ radians around the Y-AXIS of the Bloch sphere

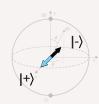
Phase Rotation by π radians around the z-axis of the Bloch sphere

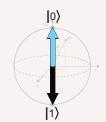
SPECIAL CASE: $Rz(\phi)$, $P(\phi)$ = rotation by ϕ radians around the z-axis S, $T = Rz(\phi)$ where $\phi = \pi/2$, $\pi/4$ respectively (TT = S, SS = Z)

H Superposition Rotation by π radians about the line x = z, y = 0 or vector [1,0,1]

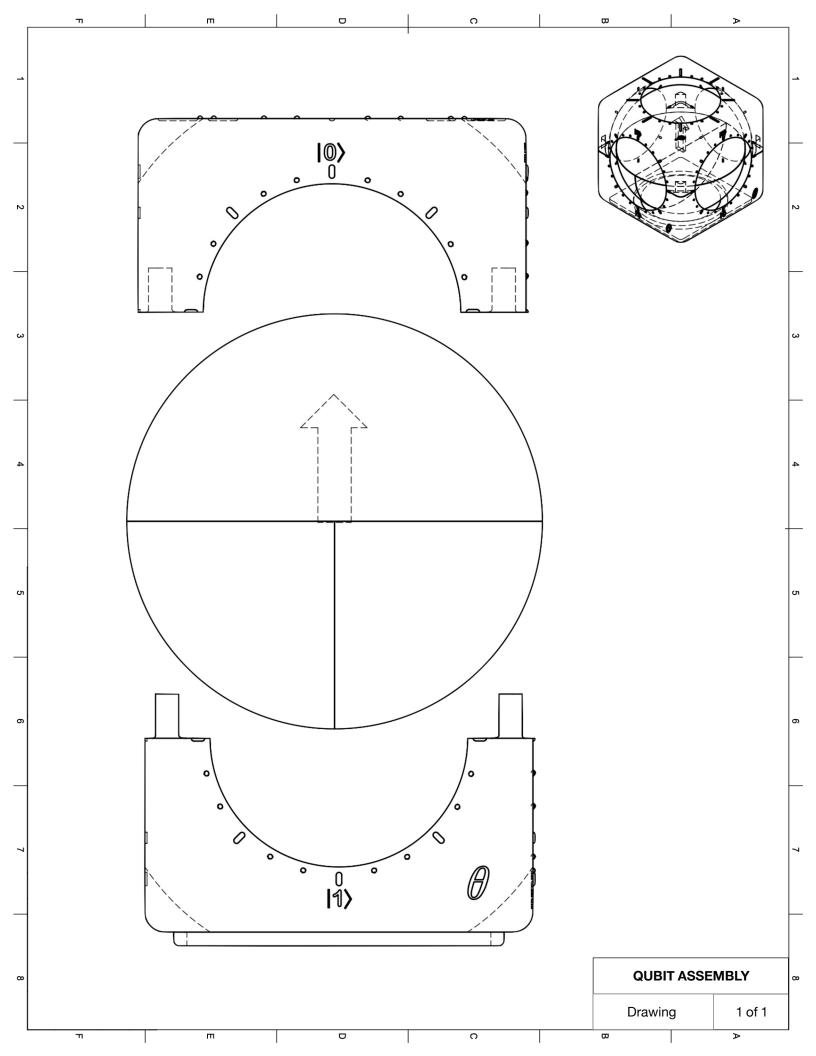
(simultaneous rotation $\pi/2$ about x, z-AXES)




NOTE: $H|0\rangle = |+\rangle$, $H|1\rangle = |-\rangle$



Identity, Do-Nothing, None No rotation


GATE IDENTITIES

Try out these identities to visualize different gates!

X = HZH I = HH = XX = YY Y = XS

Z = HXH I = SSSS = ZZ XH = HZ

S = YSX Z = SS = TTTT

